A Vilyvitányi Csillámpala Formáció turmalinjának kristálykémiája és genetikája

Fehér B.¹, Zajzon N.²

¹ Herman Ottó Múzeum, Ásványtár, feherbela@t-online.hu

² Miskolci Egyetem, Ásványtani-Földtani Intézet, nzajzon@uni-miskolc.hu

Összefoglalás

Felsőregmec és Vilyvitány környékén proterozoos vagy alsó paleozoos gneisz-csillámpala-sorozat bukkan a felszínre egy alig 4 km²-es területen. A csillámpalában elszórtan akár 1 cm-nél is hosszabb, fekete, oszlopos turmalinkristályok fordulnak elő. Ezek a turmalinkristályok kémiailag homogének, ám ha albittal vagy muszkovittal érintkeznek, akkor szegélyükön egy átalakulási zóna figyelhető meg. A kristálykémiai vizsgálatok alapján mind a kristályok fő tömege, mind az átalakulási zóna vasban gazdag drávitnak felel meg. A Vilyvitányi Csillámpalában a turmalinképződésnek két szakasza különíthető el. Az első szakaszban az eredeti pélites üledékek – valószínűleg variszkuszi korú – amfibolitfáciesű metamorfózisa során keletkezett turmalin az agyagásványokban lévő bór felszabadulása által, lényegében kémiailag zárt rendszerben. A második turmalinképződési szakasz Na-metaszomatózissal lehet kapcsolatban, ahol Na-ban és Fe-ban gazdag fluidumok hatására az első szakaszban képződött turmalinkristályok szegélye azokon a helyeken átalakult, ahol e fluidumokra nézve permeábilis ásványok (muszkovit, albit) voltak a turmalin szomszédságában.

1. Bevezetés

A Tokaji-hegységben kainozoosnál idősebb kőzetek csak az ÉK-i, Szlovákiával határos részen bukkannak a felszínre Felsőregmec és Vilyvitány között, alig 4 km²-es területen, és ennek csupán a fele tartozik Magyarországhoz. Ez a terület a földtani szakirodalomba "Zempléni-szerkezet" néven vonult be. A kis felszíni elterjedtség mellett jellemző még a nagyon rossz természetes feltártság és az erős mállékonyság [1, 2].

A Vilyvitányi Csillámpalában járulékos elegyrészként már megemlítik a turmalint, de azzal behatóbban nem foglalkoztak [2]. Metamorf környezetekben a turmalinnak azért érdemes figyelmet szentelni, mert képződése alatt nagyon érzékeny a kémiai környezetére, vagyis szisztematikusan válaszol a koegzisztens ásványokban és fluidumokban végbemenő kémiai változásokra, valamint képződéséből egy rendkívül mobilis elem, a bór jelenlétére is következtethetünk.

1. ábra: Vilyvitány és Felsőregmec környékének földtani térképe [4] alapján.

Jelmagyarázat: 1 = holocén folyóvízi üledék; 2 = pleisztocén–holocén deluviális üledék; 3 = felső-miocén (felső-szarmata–alsó-pannóniai) Erdőbényei Formáció Rátkai Kvarcit Tagozata; 4 = felső-miocén (szarmata) Kozárdi Formáció; 5 = felső-miocén (alsó szarmata) Baskói Andezit Formáció; 6 = felső-miocén (alsó-szarmata) Szerencsi Riolittufa Formáció Kékedi Tagozata; 7 = felső-miocén (alsó-szarmata) Szerencsi Riolittufa Formáció Füzérkomlósi Tagozata; 8 = középső-miocén (felső-badeni) Sátoraljaújhelyi Riolittufa Formáció Mikóházai Tagozata; 9 = középső-miocén (felső-badeni) Szilágyi Agyagmárga Formáció; 10 = alsó-perm Kásói Formáció; 11 = alsó-paleozoikumi Vilyvitányi Csillámpala Formáció

2. Földtani-kőzettani áttekintés

A "Zempléni-szerkezetet" a következő kőzetek építik fel: proterozoos vagy alsó paleozoos gneisz-csillámpalasorozat; permokarbon homokkő, konglomerátum, agyagpala, metaantracit és mészkő; permi riolittufa (kvarcporfírtufa); permotriász palás vörösagyag; triász dolomit, mészkő és homokkő [2]. Ezek közül részletesen csak az első képződménnyel foglalkozunk, mivel a turmalin megjelenése ehhez kapcsolódik.

Az itteni kristályos palákat jelenleg a Vilyvitányi Csillámpala Formációba sorolják [3], melynek felszíni kiterjedését az 1. ábra mutatja. [2] szerint a formációt a következő kőzettípusok építik fel: csillámpala, paragneisz, amfibolit és milonit-kataklázit. Közülük a turmalint hordozó csillámpalát mutatjuk be részletesebben szintén [2] alapján. A csillámpalákban egyaránt megjelenik a sztaurolit, a kianit és a sillimanit, így az utóbbi alapján a progresszív metamorfózisuk maximális foka az amfibolitfácies aljára tehető. Emellett a földpátok összetétele (oligoklász és ortoklász) is magas fokú metamorfózisra utal. Progresszív metamorf ásványnak tekinthető még a kvarc, a biotit és a durvapikkelyes muszkovit, valamint a különböző járulékos ásványok (almandin, turmalin, apatit, cirkon, rutil). A későbbi retrográd hatások főleg szericitesedésben, majd pedig kloritosodásban nyilvánultak meg. E retrográd hatásokra szuperponálódnak rá a miocén vulkánossághoz köthető hidrotermás átalakulások (kaolinosodás, szericitesedés, néha karbonátosodás), valamint a felszín közelében a felszíni mállással kapcsolatos elváltozások.

3. Alkalmazott vizsgálati módszerek és a vizsgált minták

Az ásványok kémiai összetételét JEOL JXA-8600 Superprobe típusú elektronmikroszondával határoztuk meg a Miskolci Egyetem Ásványtani-Földtani Intézetében. A műszert hullámhosszdiszperzív üzemmódban működtettük, 15 kV gyorsítófeszültség és 20 nA mintaáram mellett. Felhasznált standardok: kvarc (Si), korund (Al), ilmenit (Ti, Fe), Cr-augit (Ca), olivin (Mg), MnS₂ (Mn), anortoklász (Na), mikroklin (K) és LiF (F). Detektálási idő a csúcsokon 10 s, a háttéren 5 s, a nyalábátmérő 1 μm volt. A nyers intenzitás-adatokat PAP mátrixkorrekcióval korrigáltuk [5].

A turmalinról röntgen-pordiffrakciós felvétel is készült Bruker D8 Advance típusú diffraktométerrel, Göbeltükörrel előállított párhuzamos nyaláb geometriában, Våntec-1 helyzetérzékelő detektorral, $2\theta = 2-100^{\circ}$ mérési tartományban, 0,007° lépésközzel, lépésenként 0,4 sec detektálási idővel. Egyéb mérési paraméterek: Cu*K* α -sugárzás, 40 kV gyorsítófeszültség és 40 mA csőáram. A mérési eredményekből a turmalin elemi cellájának paramétereit a UnitCell szoftverrel [6] számoltuk.

A vizsgált minták a miskolci Herman Ottó Múzeum ásványgyűjteményében kerültek elhelyezésre 2019.41 leltári szám alatt.

4. A turmalintartalmú csillámpala ásványtani jellemzése

A Vilyvitányi Csillámpala Formáció kőzetei közül maga a csillámpala tartalmaz turmalint. A vizsgált mintát Nagy Mónika és Mesics Gábor gyűjtötték a Bükk-patak völgyében, 2012-ben. Itt a turmalin fekete színű, zömök oszlopos kristályokat alkot, melyek mérete 0,1 mm-től akár az 1 cm-t is meghaladó hosszúságig terjedhet. A vizsgált mintában megfigyelt társásványai: kvarc, muszkovit, albit, klorit, cirkon, xenotim-(Y), egy TiO₂-módosulat ([2] szerint rutil) és Fe-oxid. Kisházi és Ivancsics [2] még a következő fázisokat említi a csillámpalából: sztaurolit, kianit, sillimanit, oligoklász, ortoklász, biotit, almandin és apatit. A kőzetben a turmalinkristályok vagy magányosan, vagy több kristály által alkotott halmazokban jelennek meg. A turmalinnal érintkezésben kvarcot, albitot és muszkovitot egyaránt megfigyeltünk. Egyes példányok teljesen kvarcba, míg mások teljesen muszkovitba vannak ágyazva.

Az albitokról készült kémiai elemzéseket az 1. táblázat mutatja. Átlagos összetételük: Ab_{97,6}An_{1,9}Or_{0,5}. Az oligoklász mezejébe eső plagioklásszal nem találkoztunk.

Fehér B., Zajzon N.: A Vilyvitányi Csillámpala Formáció turmalinjának kristálykémiája és genetikája Fókuszban a hazai felszín alatti természeti erőforrások - nyersanyagok, energia és technológiák nexusa, ISBN 978-963-358-277-0, oldal: 38-56.

	1	2	3	4	5	6				
SiO ₂	68,11	68,38	68,33	68,84	68,18	68,73				
Al_2O_3	19,73	19,67	19,90	19,87	19,60	19,88				
FeO*	0,34	0,21	0,26	0,18	0,14	0,24				
MgO	0,00	0,00	0,00	0,01	0,00	0,00				
CaO	0,35	0,33	0,42	0,29	0,53	0,29				
Na ₂ O	10,61	10,51	10,47	10,18	10,47	10,38				
K ₂ O	0,09	0,05	0,04	0,10	0,09	0,08				
Összesen	99,22	99,16	99,42	99,48	99,01	99,60				
Kationszámok 8 oxigénre										
Si	2,99	3,00	2,99	3,01	3,00	3,00				
Al	1,02	1,02	1,03	1,02	1,02	1,02				
Fe	0,01	0,01	0,01	0,01	0,01	0,01				
Mg	0,00	0,00	0,00	0,00	0,00	0,00				
Са	0,02	0,02	0,02	0,01	0,02	0,01				
Na	0,90	0,89	0,89	0,86	0,89	0,88				
К	0,01	0,00	0,00	0,01	0,01	0,00				
	Föld	lpátmoleku	ılák** résza	aránya (%)						
Or	0,5	0,3	0,2	0,6	0,5	0,5				
Ab	97,7	98,0	97,6	97,8	96,7	98,0				
An	1,8	1,7	2,2	1,5	2,7	1,5				
	*	Összes vas	FeO-ként s	zámolva.						

táblázat: A Vilyvitányi Csillámpala Formáció plagioklászainak elektronmikroszondás elemzései tömegszázalékban

** Rövidítések: Or = ortoklász, Ab = albit, An = anortit.

A muszkovitok nagy, akár cm-es átmérőjű, gyöngyházfényű táblákat alkotnak. A róluk készült kémiai elemzések alapján (2. táblázat) a fengit felé való átmenet (vagyis a szeladonitkomponens részaránya) nem jelentős, viszont a Na-tartalmuk számottevő (0,11–0,14 apfu), ami 11,5–14,0% paragonitkomponenst jelent. Mivel magasabb metamorf fokon a muszkovit és paragonit az elegykristály helyett inkább doménszerkezetet képez [7], így elképzelhető, hogy a vilyvitányi fehér csillám esetében is ez a helyzet. Ebben az esetben olyan doménszerkezetű muszkovit/paragonittal állunk szemben, melyben átlagosan a muszkovitkomponens részaránya 87%, míg a paragonitkomponensé 13%. Ugyanakkor két kristálykémiai és egy genetikai okból nem zárható ki, hogy a mi esetünkben a jelentősebb mennyiségű Na a muszkovit alkotója legyen: 1.) Bár a muszkovitokban a Pa-komponens részaránya korlátozott, maximális mennyisége elérheti a 35 mol%-ot [8], ez az általunk számított maximumnál (14%) jóval magasabb érték. 2.) A szeladonitkomponens növekedésével a muszkovit és paragonit közti elegyedés mértéke csökken [9]. Mivel a vilyvitányi mintában a szeladonitkomponens részaránya nem jelentős (5,9–7,0%), így a 0,11–0,14 apfu Na akár a muszkovitban is lehet. 3.) Ha a muszkovitban lévő nátrium csak utólag, fluidumok közvetítésével, Na-metaszomatózis útján épült be a muszkovitba (lásd a diszkussziót), akkor doménszerkezet kialakulása nem valószínű [7]. Mivel az ilyen domének mérete a 10 nm-es tartományba esik, precíz azonosításukhoz TEM- vagy STEM-vizsgálatok szükségesek, mikroszondával nem láthatók.

	1	2	3
SiO ₂	47,03	47,53	47,49
TiO ₂	0,70	0,81	0,74
Al_2O_3	36,15	36,17	36,39
FeO*	0,99	1,05	1,24
MnO	0,15	0,01	0,03
MgO	0,56	0,73	0,73
CaO	0,07	0,04	0,07
Na ₂ O	1,08	0,90	1,12
K ₂ O	9,68	9,76	9,58
F	0,07	0,08	0,01
H_2O^{**}	4,55	4,58	4,62
-0 = F	-0,03	-0,03	0,00
Összesen	101,00	101,63	102,03

2. táblázat: A Vilyvitányi Csillámpala Formáció muszkovitjainak elektronmikroszondás elemzései tömegszázalékban

Ionszámok 12 oxigénre

Si	3,08	3,09	3,08
Al ^{iv}	0,92	0,91	0,92
ΣT	4,00	4,00	4,00
Al ^{vi}	1,87	1,86	1,85
Ti	0,03	0,04	0,04
Fe	0,05	0,06	0,07
Mn	0,01	0,00	0,00
Mg	0,05	0,07	0,07
Σ0	2,02	2,02	2,03
Са	0,00	0,00	0,00
Na	0,14	0,11	0,14
К	0,81	0,81	0,79
ΣΙ	0,95	0,92	0,94
OH	1,99	1,98	2,00
F	0,01	0,02	0,00

Csillámmolekulák*** részaránya (%)

Ms	80,1	81,8	78,6
Ace	5,9	6,4	7,0
Ра	13,6	11,5	14,0
Ма	0,5	0,3	0,5
	* Összas vas FaQ-kánt	számolya	

* Osszes vas FeO-ként számolva.

** H₂O a sztöchiometrikus összetételből számolva: OH + F = 2 apfu.

*** Rövidítések: Ms = muszkovit, Ace = aluminoszeladonit, Pa = paragonit, Ma = margarit.

A mintákban elvétve találkoztunk klorittal, mely vagy csillámlemezek közé, azzal azonos orientációban beékelődve fordult elő, vagy pedig turmalin- és kvarckristályok között jelent meg leveles halmazokként. EDSelemzéseit a 3. táblázat tartalmazza. Kémiai összetételük a klinoklor és a chamosit határán mozog, vagyis Fedús klinoklorok és Mg-dús chamositok, ahol a Fe/(Fe + Mg) arány 0,45 és 0,52 között változik. Mivel az oktaéderes pozícióban a kationszámok összege nem éri el az ideális 6 apfu értéket (ΣO = 5,69–5,85 apfu), ezért valószínűsíthető, hogy az összes vas kétvegyértékű formában van jelen.

	1	2	3	4
SiO ₂	27,26	28,00	26,48	28,87
TiO ₂	0,02	0,03	0,00	0,00
Al_2O_3	23,92	24,43	24,00	24,16
FeO*	23,17	23,19	23,82	20,64
MnO	0,17	0,09	0,19	0,08
MgO	13,42	12,10	13,51	13,88
CaO	0,03	0,04	0,00	0,02
Na ₂ O	0,27	0,32	0,34	0,27
K ₂ O	0,04	0,05	0,00	0,19
H ₂ O**	11,71	11,75	11,65	11,89
Összesen	100,00	100,00	100,00	100,00

3. táblázat: A Vilyvitányi Csillámpala Formáció kloritjának energiadiszperzív elektronmikroszondás elemzései tömegszázalékban. Az elemzések 100%-ra átszámolva

Kationszámok 14 oxigénre

Si	2,79	2,86	2,73	2,91
Al	1,21	1,14	1,27	1,09
ΣT	4,00	4,00	4,00	4,00
Al	1,68	1,80	1,64	1,78
Ti	0,00	0,00	0,00	0,00
Fe ²⁺	1,98	1,98	2,05	1,74
Mn	0,01	0,01	0,02	0,01
Mg	2,05	1,84	2,07	2,09
Ca	0,00	0,00	0,00	0,00
Na	0,05	0,06	0,07	0,05
К	0,01	0,01	0,00	0,02
Σ0	5,79	5,70	5,85	5,69
Fe/(Fe +				
Mg)	0,49	0,52	0,50	0,45

* Összes vas FeO-ként számolva.
** H₂O a sztöchiometrikus összetételből számolva: OH = 8 *apfu*.

5. A turmalinok ásványtani vizsgálata

5.1. Kristálykémia

A visszaszórtelektron-képek jól mutatják, hogy a vilyvitányi turmalinok kémiailag homogénnek tekinthetők (2/A. ábra), csupán egyes kristályok szélén, illetve törésvonalak mentén figyelhetők meg átalakulási szegélyek legfeljebb 80 μm-es szélességben (2/B. ábra). Ilyen szegélyek mindig csak a fluidumokra permeábilisabb muszkovittal vagy albittal való érintkezéseknél jelennek meg, kvarccal való kontaktusoknál nem mutatkoznak. Az alábbi kristálykémiai összefoglalóban a turmalinkristályok fő tömegét Tur1-nek, az átalakulási szegélyeket pedig Tur2-nek fogjuk nevezni.

2. ábra: A Vilyvitányi Csillámpala Formáció turmalinos mintáiról készült visszaszórtelektron-képek. A) Kémiailag homogén turmalinkristályok (Tur1) kvarccal (Qtz). A képen látható függőleges sávokat detektorhiba okozza. B) Turmalinkristályok (Tur1) albittal (Ab), a kristályok szegélyén és a törések mentén megjelenő átalakulási szegélyekkel (Tur2)

A turmalinokra használt nevezéktan, valamint a különböző kristályszerkezeti pozíciók jelölése a továbbiakban [10] alapján történik. A vilyvitányi turmalinokról készült kémiai elemzések a 4. táblázatban láthatók. Ezek alapján a Tur1 kristálykémiai viszonyairól a következő megállapítások tehetők. Az *X*-pozícióban a domináns kation a nátrium, mennyisége 0,53–0,61 apfu között változik. A vakanciák (jelölése: []) mennyisége is számottevő (0,28–0,37 apfu), ugyanakkor a Ca mennyisége alacsony (0,08–0,11 apfu), K pedig nincs jelen kimutatható mennyiségben. Ez alapján a Tur1 az alkáli turmalinok csoportjába tartozik (3. ábra).

Fehér B., Zajzon N.: A Vilyvitányi Csillámpala Formáció turmalinjának kristálykémiája és genetikája Fókuszban a hazai felszín alatti természeti erőforrások - nyersanyagok, energia és technológiák nexusa, ISBN 978-963-358-277-0, oldal: 38-56.

	1	2	3	4	5	6	7	8	9
SiO ₂	36,26	35,86	36,60	36,15	36,10	36,35	36,19	36,42	36,46
TiO ₂	0,83	0,85	0,79	0,81	0,86	0,85	0,95	0,71	0,69
$B_2O_3^*$	10,64	10,64	10,75	10,66	10,67	10,69	10,65	10,66	10,73
Al_2O_3	33,49	33,61	33,94	33,40	34,01	33,73	33,63	33,49	33,71
FeO**	7,08	6,89	6,86	7,20	6,50	6,96	6,83	6,89	6,84
MgO	5,96	6,31	6,09	6,17	5,95	6,03	5,81	5,97	6,28
CaO	0,59	0,65	0,51	0,57	0,51	0,47	0,60	0,50	0,55
MnO	0,04	0,00	0,01	0,00	0,19	0,00	0,09	0,08	0,20
Na ₂ O	1,66	1,80	1,86	1,94	1,88	1,83	1,83	1,90	1,96
K ₂ O	0,00	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00
F	0,00	0,03	0,01	0,06	0,00	0,01	0,01	0,00	0,02
H ₂ O***	3,67	3,66	3,71	3,65	3,68	3,68	3,67	3,68	3,69
-0 = F	0,00	-0,01	0,00	-0,03	0,00	0,00	0,00	0,00	-0,01
Összesen	100.23	100.31	101.13	100.58	100.36	100.60	100.26	100.29	101.13

4. táblázat: A Vilyvitányi Csillámpala Formáció turmalinjainak elektronmikroszondás elemzései tömegszázalékban; 1–13 = Tur1; 14–18 = Tur2.

Ionszámok 31 (O, OH, F)	anionra
----------------	-----------	---------

Si	5,92	5,86	5,92	5,89	5,88	5,91	5,91	5,94	5,90
Al	0,08	0,14	0,08	0,11	0,12	0,09	0,09	0,06	0,10
ΣT	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
В	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
ΣΒ	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Al	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ΣΖ	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
Al	0,36	0,32	0,38	0,31	0,41	0,37	0,37	0,38	0,34
Ti	0,10	0,10	0,10	0,10	0,11	0,10	0,12	0,09	0,08
Mg	1,45	1,54	1,47	1,50	1,44	1,46	1,41	1,45	1,52
Mn	0,01	0,00	0,00	0,00	0,03	0,00	0,01	0,01	0,03
Fe ²⁺	0,97	0,94	0,93	0,98	0,89	0,95	0,93	0,94	0,93
ΣY	2,89	2,91	2,87	2,89	2,87	2,88	2,85	2,87	2,89
Са	0,10	0,11	0,09	0,10	0,09	0,08	0,10	0,09	0,10
Na	0,53	0,57	0,58	0,61	0,59	0,58	0,58	0,60	0,62
К	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
[]	0,37	0,31	0,33	0,29	0,32	0,34	0,32	0,31	0,29
ΣX	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
ОН	4,00	3,98	3,99	3,97	4,00	3,99	3,99	4,00	3,99
F	0,00	0,02	0,01	0,03	0,00	0,01	0,01	0,00	0,01
$\Sigma V + W$	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00

Fehér B., Zajzon N.: A Vilyvitányi Csillámpala Formáció turmalinjának kristálykémiája és genetikája Fókuszban a hazai felszín alatti természeti erőforrások - nyersanyagok, energia és technológiák nexusa, ISBN 978-963-358-277-0, oldal: 38-56.

	10	11	12	13	14	15	16	17	18
SiO ₂	35,79	35,89	36,09	35,84	35,72	36,05	35,74	36,13	35,92
TiO ₂	0,83	0,77	0,76	0,82	1,31	1,30	1,55	1,18	1,20
$B_2O_3^*$	10,54	10,55	10,56	10,55	10,34	10,34	10,33	10,41	10,34
Al_2O_3	33,77	33,40	33,55	33,68	29,97	29,79	29,71	30,19	29,95
FeO**	6,06	6,38	6,31	6,17	9,06	8,70	9,04	8,83	8,87
MgO	5,67	6,05	5,79	5,81	5,94	6,05	5,97	6,09	6,06
CaO	0,60	0,59	0,56	0,58	0,66	0,68	0,73	0,69	0,67
MnO	0,00	0,00	0,00	0,00	0,00	0,09	0,09	0,00	0,10
Na ₂ O	1,92	1,82	1,84	1,82	2,27	2,06	2,00	2,14	2,03
K ₂ O	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F	0,00	0,00	0,02	0,01	0,06	0,04	0,00	0,07	0,06
H_2O^{***}	3,64	3,64	3,64	3,63	3,54	3,55	3,56	3,56	3,54
-0 = F	0,00	0,00	-0,01	0,00	-0,03	-0,02	0,00	-0,03	-0,03
Összesen	98,81	99,10	99,11	98,91	98,84	98,64	98,72	99,25	98,72

4. táblázat folytatása

Ionszámok 31 (O, OH, F) anionra

Si	5,90	5,91	5,94	5,91	6,01	6,06	6,01	6,03	6,04
Al	0,10	0,09	0,06	0,09	0,00	0,00	0,00	0,00	0,00
ΣT	6,00	6,00	6,00	6,00	6,01	6,06	6,01	6,03	6,04
В	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
ΣΒ	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Al	6,00	6,00	6,00	6,00	5,94	5,90	5,89	5,94	5,93
Mg	0,00	0,00	0,00	0,00	0,06	0,10	0,11	0,06	0,07
ΣZ	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
Al	0,47	0,40	0,44	0,45	0,00	0,00	0,00	0,00	0,00
Ti	0,10	0,10	0,09	0,10	0,17	0,16	0,20	0,15	0,15
Mg	1,39	1,49	1,42	1,43	1,43	1,41	1,39	1,46	1,45
Mn	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01
Fe ²⁺	0,84	0,88	0,87	0,85	1,27	1,22	1,27	1,23	1,25
ΣY	2,80	2,86	2,82	2,83	2,87	2,81	2,87	2,84	2,86
Са	0,11	0,10	0,10	0,10	0,12	0,12	0,13	0,12	0,12
Na	0,61	0,58	0,59	0,58	0,74	0,67	0,65	0,69	0,66
К	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
[]	0,28	0,31	0,31	0,32	0,14	0,21	0,22	0,18	0,22
ΣX	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
OH	4,00	4,00	3,99	3,99	3,97	3,98	4,00	3,96	3,97
F	0,00	0,00	0,01	0,01	0,03	0,02	0,00	0,04	0,03
$\Sigma V + W$	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00

* B₂O₃ a sztöchiometrikus összetételből számolva: B = 3 *apfu.* ** Összes vas FeO-ként mérve. *** H₂O a sztöchiometrikus összetételből számolva: OH + F = 4 *apfu*.

3. ábra: A vilyvitányi turmalinok X-kation tartalma a fő turmalincsoportok háromszögdiagramjában ábrázolva. Tur1 = piros pontok, Tur2 = kék pontok

A *T*-pozícióban a Si betöltöttsége magas (5,86–5,94 apfu), emiatt ide csak kis mennyiségű Al épül be (0,06– 0,14 apfu). A *Z*-pozíciót teljes egészében Al tölti be, míg szokás szerint az *Y*-pozíció kationtartalma a legvegyesebb, bár az egyes kationok mennyisége itt is elég szűk határok között mozog. Itt dominál az Mg (1,39–1,54 apfu), de jelentős a Fe²⁺ (0,84–0,98 apfu), valamint az Al (0,31–0,47 apfu) mennyisége is. A Ti csak nagyon kis mennyiségben (0,08–0,12 apfu), az Mn pedig nyomokban (0–0,03 apfu) figyelhető meg. A *V* + *W* pozíciókat az OH dominálja, a F beépülése nem számottevő. Mindezek alapján a vilyvitányi csillámpala turmalinja a drávit ásványfajt képviseli (4. ábra).

4. ábra: A vilyvitányi csillámpala turmalinjainak kémiai összetétele a Fe/(Fe + Mg)^y – []/([] + Na)^x diagramban ábrázolva. Piros

pontok: a kristályok fő tömege (Tur1); kék pontok: egyes kristályok szegélyén megfigyelhető átalakulási zóna (Tur2). A számmal jelölt mezők a különböző metamorf fokú turmalinok jellemző összetételi tartományait mutatják [11] alapján: 1 = diagenetikus turmalinok; 2 = alacsony fokú turmalinok; 3 = közepes fokú turmalinok; 4 = magas fokú turmalinok

Mint azt a 3. és 4. ábrák is érzékeltetik, az egyes turmalinkristályok szegélyén megfigyelhető átalakulási zónák (Tur2) kémiája némileg eltér a Tur1 összetételétől. Az *X*-pozícióban továbbra is a Na a domináns kation, mennyisége azonban jelentősebb, mint a Tur1-ben (0,65–0,74 apfu). A Na beépülése a vakanciák rovására történt (0,14–0,22 apfu), lényegében változatlan Ca-tartalom (0,12–0,13 apfu) mellett. Így a Tur2 is az alkáli turmalinok csoportjába tartozik (3. ábra).

Nem számottevő különbség, hogy a Tur2 *T*-pozíciójában kizárólag Si jelenik meg. Ennél sokkal érdekesebb a Tur2-ben mutatkozó Al-hiány, mivel az Al_{tot} értéke mindig az ideális 6 apfu alatt maradt (5,89–5,94 apfu). Tehát még úgy sem marad elég Al a Z-pozíció teljes betöltésére, hogy a magas Si-tartalom miatt a *T*-be nem történt Al-beépülés. A *Z*-ből hiányzó 0,11–0,06 apfu kationtartalmat Mg-mal töltöttük be, így az *Y*-pozícióban – a Tur1-től eltérően – egyáltalán nincs jelen Al. A domináns kation itt is az Mg, mennyisége a Tur1-ben mértekhez hasonló (1,39–1,46 apfu). A Fe²⁺-tartalom azonban magasabb, mint a Tur1-ben, majdnem eléri az Mg mennyiségét (1,22–1,27 apfu), így ez a turmalin is a drávit-sörl sorozat tagja még a drávit mezejében, de némileg közelebb helyezkedik el a sörlhöz, mint a Tur1 (4. ábra). A Ti-tartalom kicsit magasabb, mint a Tur1-ben (0,15–0,20 apfu), az Mn-tartalom viszont itt is jelentéktelen (0–0,01 apfu).

5. ábra: Helyettesítési mechanizmusok a vilyvitányi csillámpala turmalinjában: A) Fe-Mg diagram; B) Al_{tot}-Fe diagram; C) [] + Al^[6] – Na + Mg + Fe diagram; D) Al^[6] + 1,33Ti – Ca + Na + Fe + Mg + Mn diagram. Tur1 = piros pontok; Tur2 = kék pontok

Ha a Tur1 és Tur2 között működő helyettesítési mechanizmusokat vizsgáljuk, akkor az a legfeltűnőbb, hogy a rendkívül gyakori homovalens $Fe^{2+} \leftrightarrow Mg$ helyettesítés nem figyelhető meg, hiszen mindkét zónában az Mg szintje hasonló, ugyanakkor a Fe^{2+} -tartalomban már jól mérhető különbségek mutatkoznak (5/A. ábra). Mivel az Al- és a Fe-tartalom közti negatív korreláció elég erős (5/B. ábra), ez felveti annak lehetőségét, hogy a vas egy része háromvegyértékű, és működik a homovalens Al \leftrightarrow Fe³⁺ helyettesítési mechanizmus. Ennek azonban az *Y*-pozíció alacsony betöltöttsége mond ellent, amely mindkét zónát figyelembe véve 2,80 és 2,91 apfu között változik, vagyis nem éri el az ideális 3,00 apfu értéket. Bár elvileg lehetnek vakanciák az *Y*-pozícióban [12], a Fe³⁺-tartalom növelésével ezeknek a vakanciáknak a száma is növekedne, ami elég valószínűtlen. Ezt a kérdést eldönteni csak olyan analitikai módszerrel lehetne, mely külön tudná elemezni a turmalinban a kétféle vegyértékállapotú vasat (pl. nedves kémiai módszer vagy Mössbauer-spektroszkópia).

Ami egyértelműnek tűnik, hogy a Tur1-hez képest a Tur2-ben az X-pozícióban lecsökkent vakanciák száma és

a megemelkedett Na-tartalom, valamint az Y-ban a lecsökkent Al-tartalom és a megemelkedett Fe²⁺ mennyisége a $[]^{X} + Al^{Y} \rightarrow Na^{X} + (Fe^{2+}, Mg)^{Y}$ heterovalens helyettesítéssel van kapcsolatban (5/C. ábra). Ennek az ún. alkálihiányos helyettesítésnek a dominanciáját az ún. protonhiányos helyettesítés felett jól illusztrálja az 5/D. ábra. Az utóbbi helyettesítési sémát az alábbi egyenlettel fejezhetjük ki [13]: O^W + Al^Y \rightarrow (OH)^W + (Fe²⁺, Mg)^Y.

5.2. Röntgen-pordiffrakció

A vilyvitányi turmalinról röntgen-pordiffrakciós felvételt is készítettünk, a mért reflexiók az 5. táblázatban szerepelnek. A kapott értékekből kiszámoltuk az elemi cella adatait: a = 15,951(3) Å, c = 7,192(2) Å, V = 1584,8(5) Å³. A sörl-drávit-sorozatban, amelybe a vilyvitányi turmalinok is tartoznak, a rácsállandókból az
(Y-O> és <Z-O> kötéshosszak számíthatók a következő tapasztalati képletek alapján [14]: a = 13,045 + 1,437<Y-O>, illetve c = 0,886 + 3,272<Z-O>. Behelyettesítve a röntgenfelvételből számított rácsállandókat, a vilyvitányi turmalin esetében
(Y-O> = 2,022 Å és <Z-O> = 1,927 Å. Az utóbbi értékből számolni tudjuk a Z-pozícióban lévő Mg mennyiségét szintén egy tapasztalati képlettel [15]: Mg^Z (apfu) = 49,697<Z-O> – 94,845, amely a vilyvitányi turmalinra 0,92 apfu-t ad, vagyis eszerint a 4. táblázattól eltérően a Mg nem döntően az Y-pozícióba épül be, hanem egy jelentősebb része a Z-pozícióba kerül, úgy is mondhatnánk, hogy a Mg rendezetlenül oszlik meg a két oktaéderes (Y és Z) pozíció között. Ha valóban ez a helyzet, annak annyi következménye lenne, hogy ez esetben az Y-ban megszűnne a Mg dominanciája és helyette a vas lesz a legnagyobb mennyiségű kation, s így az ásvány annak ellenére a sörl fajt képviseli, hogy összességében Mg_{tot} > Fe_{tot}, hiszen Mg^Y < Fe^Y (apfu).

d _{mért} (Å)	d _{szám.} (Å)	I _{rel.} (%)	h	k	1
6,384	6,379	64	1	0	1
4,983	4,982	19	0	2	1
4,602	4,605	10	3	0	0
4,224	4,225	53	2	1	1
3,991	3,988	53	2	2	0
3,475	3,480	100	0	1	2
3,381	3,381	9	1	3	1
3,197	3,190	30	2	0	2
3,016	3,014	7	4	1	0
2,959	2,962	87	1	2	2
2,901	2,900	5	3	2	1
2,621	2,622	5	3	1	2
2,580	2,579	69	0	5	1
2,453	2,454	3	2	4	1
2,393	2,397	21	0	0	3
2,378	2,378	12	2	3	2
2,345	2,345	10	5	1	1
2,192	2,191	9	5	0	2
2,166	2,166	8	4	3	1
2,124	2,126	16	3	0	3
2,112	2,113	5	4	2	2
2,052	2,055	17	2	2	3
2,042	2,042	37	1	5	2
2,022	2,022	7	1	6	1
1,995	1,994	3	4	4	0

5. táblázat: A vilyvitányi turmalin röntgen-pordiffrakciós adatai

1,919 $1,920$ 22 3 4 2 $1,903$ $1,903$ 2 7 0 1 $1,875$ $1,876$ 7 1 4 3 $1,853$ $1,851$ 5 6 2 1 $1,780$ $1,780$ 8 3 3 3 $1,736$ $1,740$ 3 6 3 0 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ 1.595 12 5 5 0 $1,587$ $1,587$ 3 4 6 1 $1,587$ $1,587$ 3 4 6 1 $1,548$ $1,547$ 3 4 6 1 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ 5 6 4 2 4 4 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,433$ $1,343$ 3 5 6 5 5 $3,31,405$ $1,328$ $1,327$ <th>d_{mért} (Å)</th> <th>d_{szám.} (Å)</th> <th>I_{rel.} (%)</th> <th>h</th> <th>k</th> <th>1</th>	d _{mért} (Å)	d _{szám.} (Å)	I _{rel.} (%)	h	k	1
1,903 $1,903$ 2 7 0 1 $1,875$ $1,876$ 7 1 4 3 $1,853$ $1,851$ 5 6 2 1 $1,780$ $1,780$ 8 3 3 3 $1,736$ $1,740$ 3 6 3 0 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,450$ $1,450$ 5 6 4 2 $1,430$ $1,450$ 5 6 4 2 $1,434$ $1,451$ 3 0 1 7 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,408$ $1,408$ 15 3 6 3 $1,329$ $1,328$ 6 5 5 3 $1,329$ $1,329$ 7 6 6 <td< td=""><td>1,919</td><td>1,920</td><td>22</td><td>3</td><td>4</td><td>2</td></td<>	1,919	1,920	22	3	4	2
1,875 $1,876$ 7 1 4 3 $1,853$ $1,851$ 5 6 2 1 $1,780$ $1,780$ 8 3 3 $1,736$ $1,740$ 3 6 3 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,420$ $1,420$ 5 6 5 1 $1,420$ $1,420$ 5 6 5 1 $1,420$ $1,420$ 5 6 5 3 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,337$ 5 10 1 0	1,903	1,903	2	7	0	1
1,853 $1,851$ 5 6 2 1 $1,780$ $1,780$ 8 3 3 3 $1,736$ $1,740$ 3 6 3 0 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,450$ $1,481$ 4 2 4 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 $1,420$ $1,420$ 5 6 5 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 5 6 5 $1,312$ $1,310$ 5 2 3 $1,328$ $1,329$ 7 6 6 $1,328$ $1,329$ 7 6 6 $1,312$ </td <td>1,875</td> <td>1,876</td> <td>7</td> <td>1</td> <td>4</td> <td>3</td>	1,875	1,876	7	1	4	3
1,780 $1,780$ 8 3 3 3 $1,736$ $1,740$ 3 6 3 0 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 22 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,434$ $1,431$ 3 0 1 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,327$ $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 </td <td>1,853</td> <td>1,851</td> <td>5</td> <td>6</td> <td>2</td> <td>1</td>	1,853	1,851	5	6	2	1
1,736 $1,740$ 3 6 3 0 $1,660$ $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 1 $1,229$ $1,230$ 2 4 7 3 <	1,780	1,780	8	3	3	3
1,660 $1,661$ 18 0 6 3 $1,644$ $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 $1,450$ $1,481$ 4 2 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,433$ $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 9 1 $1,420$ $1,420$ 4 9 1 $1,420$ $1,408$ 3 6 3 $1,405$ $1,408$ 3 6 3 $1,328$ $1,327$ 5 10 0 $1,312$ $1,310$ 5 2 3 $1,328$ $1,327$ 3 0 11 $1,328$ $1,327$ 3 0 11 $1,242$ $1,242$ 2 7 5 $1,274$ 1	1,736	1,740	3	6	3	0
1,644 $1,643$ 9 2 7 1 $1,595$ $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 $1,434$ $1,431$ 3 0 1 5 $1,433$ $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 3 6 3 3 $1,327$ $1,337$ 5 10 0 1 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,311$ 5 1 1 1 $1,260$ $1,261$ 3 5 4 4 <td< td=""><td>1,660</td><td>1,661</td><td>18</td><td>0</td><td>6</td><td>3</td></td<>	1,660	1,661	18	0	6	3
1,595 $1,595$ 12 5 5 0 $1,587$ $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,450$ $1,450$ 5 6 4 2 $1,430$ $1,445$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,434$ $1,431$ 3 0 1 5 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,357$ $1,357$ 5 10 0 1 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,260$ $1,261$ 3 5 <td>1,644</td> <td>1,643</td> <td>9</td> <td>2</td> <td>7</td> <td>1</td>	1,644	1,643	9	2	7	1
1,587 $1,587$ 3 4 5 2 $1,562$ $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ 5 6 4 $1,450$ $1,450$ 5 6 4 $1,433$ $1,432$ 3 7 4 $1,420$ $1,420$ 5 6 5 $1,420$ $1,420$ 4 1 9 $1,420$ $1,420$ 5 6 5 $1,408$ $1,408$ 15 3 6 3 3 $1,357$ 5 10 0 $1,343$ $1,343$ 3 5 6 $1,329$ $1,328$ 6 5 5 $3,311$ $1,311$ 5 10 1 $1,308$ $1,307$ 4 8 3 $1,274$ $1,277$ 13 9 3 $1,242$ $1,242$ 2 7 5 2 $1,237$ 3 0 11 $1,229$ $1,230$ 2 4 7 3 $1,112$ $1,112$ 3 1 $1,197$ $1,150$ </td <td>1,595</td> <td>1,595</td> <td>12</td> <td>5</td> <td>5</td> <td>0</td>	1,595	1,595	12	5	5	0
1,562 $1,564$ 2 3 2 4 $1,548$ $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,450$ 5 6 4 2 $1,434$ $1,450$ 5 6 5 7 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,408$ 3 6 3 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 </td <td>1,587</td> <td>1,587</td> <td>3</td> <td>4</td> <td>5</td> <td>2</td>	1,587	1,587	3	4	5	2
1,548 $1,547$ 3 4 6 1 $1,534$ $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,450$ $1,450$ 5 6 4 2 $1,430$ $1,450$ 5 6 4 2 $1,434$ $1,450$ 5 6 4 2 $1,433$ $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 <td< td=""><td>1,562</td><td>1,564</td><td>2</td><td>3</td><td>2</td><td>4</td></td<>	1,562	1,564	2	3	2	4
1,534 $1,535$ 3 9 0 0 $1,528$ $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,450$ 5 6 4 2 $1,434$ $1,440$ 5 6 5 1 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 $1,237$ $1,237$ 3 0 11 1 $1,229$ $1,230$ 2 4 7 <	1,548	1,547	3	4	6	1
1,528 $1,528$ 3 7 2 2 $1,505$ $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,433$ $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,216$ 2 8 5 0 <	1,534	1,535	3	9	0	0
1,505 $1,507$ 17 0 5 4 $1,480$ $1,481$ 4 2 4 4 $1,454$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,433$ $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,216$ 2 8 5 <	1,528	1,528	3	7	2	2
1,480 $1,481$ 4 2 4 4 $1,450$ $1,455$ 18 1 7 3 $1,450$ $1,450$ 5 6 4 2 $1,434$ $1,431$ 3 0 1 5 $1,433$ $1,420$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 $1,237$ $1,230$ 2 4 7 3 $1,114$ $1,216$ 2 8 5 <t< td=""><td>1.505</td><td>1,507</td><td>17</td><td>0</td><td>5</td><td>4</td></t<>	1.505	1,507	17	0	5	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.480	1,481	4	2	4	4
1,4501,45056421,4311,43130151,4331,43237401,4291,42753721,4201,42041911,4201,42041911,4201,42056511,4081,408153631,4051,40836331,3571,357510011,3431,34335621,3291,32865531,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2291,23024731,2141,21628501,1971,19930061,1861,18531161,1861,18531161,1861,18531111,127393311,1271,12739331,1121,11129511,0951,0952 <td< td=""><td>1.454</td><td>1.455</td><td>18</td><td>1</td><td>7</td><td>3</td></td<>	1.454	1.455	18	1	7	3
1,4341,43130151,4331,43237401,4291,42753721,4201,42041911,4201,42041911,4201,42056511,4081,408153631,4051,40836331,3571,357510011,3431,34335621,3291,32865531,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2291,23024731,2141,21628501,1971,19930061,1861,1853111,1501,150310131,1271,156210311,12739331,1211,11129511,0951,095210041,0291,02947731,0201,021456	1.450	1.450	5	6	4	2
1,433 $1,432$ 3 7 4 0 $1,429$ $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,242$ 2 7 5 2 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 1 $1,150$ $1,150$ 3 10 1 3 $1,112$ $1,111$ 2 9 5 1 $1,029$ $1,029$ 4 7 7 <t< td=""><td>1.434</td><td>1.431</td><td>3</td><td>0</td><td>1</td><td>5</td></t<>	1.434	1.431	3	0	1	5
1,429 $1,427$ 5 3 7 2 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,242$ 2 7 5 2 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 1 $1,150$ $1,150$ 3 10 1 3 $1,127$ $1,127$ 3 9 3 3 $1,112$ $1,111$ 2 9 5 1 $1,029$ $1,029$ 4 7 7 3 </td <td>1.433</td> <td>1.432</td> <td>3</td> <td>7</td> <td>4</td> <td>0</td>	1.433	1.432	3	7	4	0
1,120 $1,420$ $1,420$ 4 1 9 1 $1,420$ $1,420$ 5 6 5 1 $1,408$ $1,408$ 15 3 6 3 $1,405$ $1,408$ 3 6 3 3 $1,357$ $1,357$ 5 10 0 1 $1,343$ $1,343$ 3 5 6 2 $1,329$ $1,328$ 6 5 5 3 $1,328$ $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,310$ 5 2 3 5 $1,311$ $1,317$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,242$ 2 7 5 2 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 $1,157$ $1,156$ 2 10 3 $1,112$ $1,111$ 2 9 5 1 $1,029$ $1,029$ 4 7 7 3 $1,029$ $1,029$ 4 7 7 3 $1,029$ $1,029$ 4 7 7 3	1,133	1.427	5	3	7	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,420	1.420	4	1	9	1
1,1231,12330311,4081,408153631,4051,40836331,3571,357510011,3431,34335621,3291,32865531,3281,32976601,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2421,24227521,2371,237301111,2291,23024731,2141,21628501,1971,19930061,1861,18531161,1821,182311111,1571,156210311,1501,150310131,1271,12739331,1221,02947731,0201,0214565	1,120	1,420	5	6	5	1
1,1001,1001,1001001,4051,40836331,3571,357510011,3431,34335621,3291,32865531,3281,32976601,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2421,24227521,2371,237301111,2291,23024731,1171,19930061,1861,18531161,1861,18531111,1571,156210311,1571,156210311,1571,150310131,1271,12739331,1121,11129511,0291,02947731,0201,0214565	1,120	1,408	15	3	6	3
1,1001,1003001,3571,357510011,3431,34335621,3291,32865531,3281,32976601,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2421,24227521,2371,237301111,2291,23024731,1971,19930061,1861,18531161,1821,182311111,1501,150310131,1271,12739331,1121,11129511,0951,095210041,0201,0214565	1,100	1,408	3	6	3	3
1,3071,307313011,3431,34335621,3291,32865531,3281,32976601,3121,31052351,3111,311510101,3081,30748321,2741,277139301,2601,2613541,2421,24227521,2371,237301111,2291,23024731,2141,21628501,1971,19930061,1861,1853111,1571,156210311,1501,150310131,1271,12739331,1121,11129511,0251,095210041,0201,0214565	1 357	1.357	5	10	0	1
1,3291,3286551,3281,3297661,3121,3105231,3111,31151011,3081,3074831,2741,27713931,2601,2613541,2421,2422751,2371,23730111,2291,2302471,1971,1993001,1861,1853111,1571,15621031,1271,1273931,1271,1273931,1271,1273931,1201,095210041,0291,0952100	1,343	1.343	3	5	6	2
1,329 $1,329$ 7 6 6 0 $1,312$ $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 $1,237$ $1,237$ 3 0 11 1 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,216$ 2 8 5 0 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 $1,157$ $1,156$ 2 10 3 $1,127$ $1,150$ 3 10 1 3 $1,112$ $1,111$ 2 9 5 1 $1,095$ $1,095$ 2 10 0 4 $1,020$ $1,021$ 4 5 6 5	1,329	1.328	6	5	5	3
1,312 $1,310$ 5 2 3 5 $1,311$ $1,311$ 5 10 1 0 $1,308$ $1,307$ 4 8 3 2 $1,274$ $1,277$ 13 9 3 0 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 $1,237$ $1,237$ 3 0 11 1 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,216$ 2 8 5 0 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 $1,157$ $1,156$ 2 10 3 $1,127$ $1,150$ 3 10 1 $1,127$ $1,127$ 3 9 3 $1,112$ $1,111$ 2 9 5 $1,095$ $1,095$ 2 10 0 4 7 7 3 $1,020$ $1,021$ 4 5 6	1.328	1.329	7	6	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,312	1.310	5	2	3	5
1,0111,0110101,3081,30748321,2741,277139301,2601,26135441,2421,24227521,2371,237301111,2291,23024731,2141,21628501,1971,19930061,1861,1853111,1571,156210311,1501,150310131,1271,12739331,1121,11129511,0951,095210041,0201,0214565	1,311	1.311	5	10	1	0
1,3001,00110311,2741,277139301,2601,26135441,2421,24227521,2371,237301111,2291,23024731,2141,21628501,1971,19930061,1861,1853111,1571,156210311,1501,150310131,1271,12739331,1221,01129511,0951,095210041,0201,0214565	1 308	1.307	4	8	3	2
1,271 1277 13 3 5 6 $1,260$ $1,261$ 3 5 4 4 $1,242$ $1,242$ 2 7 5 2 $1,237$ $1,237$ 3 0 11 1 $1,229$ $1,230$ 2 4 7 3 $1,214$ $1,216$ 2 8 5 0 $1,197$ $1,199$ 3 0 0 6 $1,186$ $1,185$ 3 1 1 6 $1,182$ $1,182$ 3 11 1 $1,157$ $1,156$ 2 10 3 1 $1,150$ $1,150$ 3 10 1 3 $1,127$ $1,127$ 3 9 3 3 $1,112$ $1,111$ 2 9 5 1 $1,095$ $1,095$ 2 10 0 4 $1,029$ $1,029$ 4 7 7 3 $1,020$ $1,021$ 4 5 6 5	1,300	1,277	13	9	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,260	1.261	3	5	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,200	1.242	2	7	5	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,237	1.237	3	,	11	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,237	1.230	2	4	7	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,229	1 216	2	8	, 5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 9 7	1,199	3	0	0	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,197	1,185	3	1	1	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 9 2	1 1 1 8 2	2	11	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 5 7	1 1 1 5 6	2	10	2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 5 0	1,150	2	10	1	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 2 7	1 1 2 7	2	10 Q	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1127	1 111	2	9 Q	<u>5</u> ג	1
1,075 1,075 2 10 0 4 1,029 1,029 4 7 7 3 1,020 1,021 4 5 6 5	1 / 005	1 / 1 / 95	2	10	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 020	1 070	<u> </u>	7	7	7
	1,029	1 021	<u> </u>	י ג	6	5
1 10191 1.0161 41 01 21 7	1 019	1,021	4	0	2	7

6. Diszkusszió

A vilyvitányi csillámpalák feltehetően proterozoos korú pélites üledékek metamorfózisával jöttek létre. A bennük megjelenő sillimanit alapján metamorfózisuk maximális foka az amfibolitfácies aljára tehető [2]. Ennek az idősebb metamorf eseménynek a Rb/Sr kora csillámpalából szeparált muszkoviton mérve 962 ± 39 millió év, így a folyamatot az assynti (rifei) orogenezishez kötik [16]. Újabb vizsgálatok e metamorf eseményt jóval fiatalabbnak, variszkuszi korúnak tartják (338 ± 22 millió év) csillámpalából elválasztott monaciton elektronmikroszondával mért U/Pb kor alapján [17]. Az idősebb kort Balogh [18] is elemzési hibának tartja, és amfibolitból szeparált amfibolon mért 338 ± 13 millió éves koradata lényegében megegyezik a monaciton mért értékkel, ugyanakkor csillámpalából szeparált muszkovitokon mért K/Ar koradatai 227 és 284 millió év között szórnak.

Az eredeti pélites üledék még nem tartalmazott turmalint. Ezt onnan lehet tudni, hogy a vizsgált mintában a turmalinkristályok belsejében törmelékes eredetű mag nem volt kimutatható. Márpedig a turmalin az amfibolitfácies hőmérséklet- és nyomásviszonyai között még stabil, így, ha lettek volna törmelékes turmalinszemek a kőzetben, akkor a metamorfózis alatt képződött turmalinok nukleációja ezek felületén indult volna meg, és így a kristályok belsejében a törmelékes magok most is megfigyelhetők lennének.

Az idősebb, alsó amfibolitfáciesű metamorfózis során jöttek létre a csillámpala turmalinjai (Tur1). A turmalin képződéséhez szükséges bór a pélites kőzet agyagásványaiból származhatott, hiszen ezek nagy mennyiségű bórt képesek tárolni [19]. Az agyagásványokból az adszorbeált bór kb. 150 °C-on szabadul fel [20], ami akkor történhetett, amikor a metamorfózis hatására az agyagásványok átalakultak muszkovittá, illetve egyéb szilikátokká. Ha a turmalin nem ebben a metamorf szakaszban képződött volna, akkor később már aligha lett volna rá lehetősége, mivel a metamorfózis során felszabaduló – és a turmalin képződéséhez elengedhetetlen – bór nem tudott volna más kristályos fázisban megkötődni, s így eltávozott volna a rendszerből. A turmalin képződéséhez szükséges Al is nagy mennyiségben rendelkezésre állt, hiszen a paragenezisében olyan Altelített fázisok jelennek meg, mint a sztaurolit, kianit és sillimanit. Az alacsony Ca-tartalom minden bizonnyal annak tudható be, hogy az eredeti pélites kőzet kalcium-karbonát tartalma alacsony volt. Ugyanígy a Natartalma sem lehetett túl magas, ezért a képződő turmalin X-pozíciójában a vakanciák száma megemelkedett (lásd a 3. ábrát). [11] szerint a "legtipikusabb" metapélites kőzetek turmalinjaiban az Mg/(Mg + Fe_{tot}) arány 0,4 és 0,7 között mozog, a vilyvitányi turmalinokban ez az érték 0,60–0,63. Összességében megállapítható, hogy a vilyvitányi turmalin kémiailag megfelel a [11] által a közepes fokú metapélitekre jellemzőnek tartott turmalinoknak (lásd a 4. ábrát). Mivel a Tur1 kémiai zónásságot nem mutat, képződése kémiailag kvázi zárt rendszerben történhetett, amely valószínűtlenné teszi a cirkuláló fluidumok jelenlétét.

Ha a Tur1 összetételi pontjait ábrázoljuk az Al-Fe-Mg-diagramon [21], akkor az elemzési pontok a 4. mezőbe esnek (6. ábra), amely az Al-telített fázissal koegzisztens metapéliteknek és metapszammitoknak felel meg, vagyis pontosan annak a kőzettípusnak, amelyben a turmalinok Vilyvitányban is megtalálhatók. Ez is egy bizonyíték arra, hogy a turmalin az eredeti pélites kőzet metamorfózisával, helyben képződött.

6. ábra: A vilyvitányi turmalinok összetételének ábrázolása az Al-Fe-Mg-diagramban [21] alapján.

Tur1 = piros pontok; Tur2 = kék pontok. Az egyes mezők jelentése: 1 = Li-gazdag granitoid pegmatitok és aplitok; 2 = Li-szegény granitoidok és pegmatitjaik, illetve aplitjaik; 3 = Fe³⁺-gazdag kvarc-turmalin kőzetek (hidrotermásan átalakult gránitok); 4 = metapélitek és metapszammitok koegzisztens Al-telített fázissal; 5 = metapélitek és metapszammitok koegzisztens Al-telített fázis nélkül; 6 = Fe³⁺-gazdag kvarc-turmalin

kőzetek, Ca-szilikát kőzetek és metapélitek; 7 = alacsony Ca-tartalmú metaultramafitok és Cr-V-gazdag metaszedimentek; 8 = metakarbonátok és metapiroxenitek

Kisházi és Ivancsics [2] a Vilyvitányi Csillámpalát ért retrográd metamorf hatások közül a szericitesedést és a kloritosodást említették. Az általunk vizsgált mintában azonban egy korábban innen nem említett folyamat, a Na-metaszomatózis eseményei rajzolódnak ki. Ennek legszembetűnőbb megnyilvánulása a kőzet erős albitosodása. Míg [2] a plagioklászok közül az oligoklászt említi innen, addig a turmalinos mintában csak albittal találkoztunk, mely a turmalinnál egyértelműen későbbi képződésű. Erre utal a felnyílt turmalinkristályok közé beékelődő albit jelenléte, a tektonikus hatásra feldarabolódott turmalinkristálytöredékek albitban való megjelenése, illetve az albittal határos turmalinok sok helyen megfigyelhető csipkézett szegélye (7. ábra). Elképzelhető, hogy a Na-metaszomatózis okozta a muszkovitok megemelkedett Na-tartalmát is.

7. ábra: A) Feldarabolódott turmalinok (Tur1) albitban (Ab); B) Csipkézett szegélyű turmalin (Tur1) albittal (Ab) érintkezve. Visszaszórtelektron-képek

Az egyes turmalinkristályok (Tur1) szélén megjelenő reakciószegélyeket (Tur2) is ennek a Nametaszomatózisnak tulajdoníthatjuk. Először is, mivel a turmalinok nagyon stabil ásványok, bennük elemdiffúzió hőmérséklet- vagy nyomásváltozás hatására nem indul be, csak úgy, ha jelen van egy ezt megkönnyítő fluidum. Másodszor, [11] szerint a metamorfózis fokának növekedésével a turmalinok Natartalma is növekszik a vakanciák rovására, vagyis a []/([] + Na) arány csökken. Ez a trend tükröződik a 4. ábrán jelölt mezők elhelyezkedésében, amint az 1. mezőtől a 4. mező felé haladva a []/([] + Na) arány csökkenésével a metamorfózis foka nő. Ez a trend azonban a vilyvitányi turmalin esetében pont fordított, hiszen míg Tur1-ben a []/([] + Na) = 0,31–0,41, addig az alacsonyabb hőmérsékleten és nyomáson képződött Tur2-ben 0,16–0,25. Ezt csak úgy lehet magyarázni, ha a Tur2 képződésekor a Na külső forrásból áramlott be, egy fluidum komponenseként.

7. Következtetések

A vilyvitányi turmalinról összegzésképpen a következő megállapítások tehetők:

1. Az ún. "Zempléni-szerkezetben" turmalinok az idős csillámpalákban (Vilyvitányi Csillámpala Formáció) fordulnak elő.

2. A kristályok nagy része kémiailag egyveretű, zónásságot nem mutatnak. Összetételük a drávit mezejébe esik, bár jelentős Fe-tartalmuk (0,84–0,98 apfu), illetve az *X*-pozícióban lévő vakanciák miatt átmenetet képeznek a sörl, illetve a magneziofoitit ásványfajok felé (Tur1).

3. Azoknál a kristályoknál, melyek muszkovittal vagy albittal érintkeznek, a szegélyeken sokszor megfigyelhető a visszaszórtelektron-képeken egy világosabb átalakulási zóna (Tur2). Ez a zóna szintén a drávit összetételének felel meg, de a Tur1-hez képest megemelkedett Fe- és Na-tartalommal.

4. A Vilyvitányi Csillámpalában – a kristálykémiai viszonyok alapján – a turmalinképződésnek két szakasza különíthető el. Az első szakaszban az eredeti pélites üledékek amfibolitfáciesű metamorfózisa során keletkezett turmalin az agyagásványokban lévő bór felszabadulása által, lényegében kémiailag zárt rendszerben.

5. A második turmalinképződési szakasz a Zempléni-szerkezetből eddig nem megfigyelt Nametaszomatózissal lehet kapcsolatban, ahol Na-ban és Fe-ban gazdag fluidumok hatására az első szakaszban képződött turmalinkristályok szegélye azokon a helyeken átalakult, ahol e fluidumokra nézve viszonylag permeábilis ásványok (muszkovit, albit) voltak a turmalin szomszédságában. Kvarc mellett ez a zóna nem fejlődött ki.

6. A Na-metaszomatózist bizonyítja a kései albitosodás, a muszkovitok megemelkedett Na-tartalma, illetve egyes turmalinkristályok szegélyén megjelenő, magasabb Na-tartalmú reakciószegély.

8. Köszönetnyilvánítás

A tématerületi kutatás a Miskolci Egyetem "Társadalmi hasznosság növelő fejlesztések a hazai felszín alatti természeti erőforrások hatékonyabb kiaknázása és hasznosítása területén" című, az Innovációs és Technológia Minisztérium Nemzeti Kutatási, Fejlesztési és Innovációs Alapból nyújtott támogatásával, a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal által kibocsátott támogatói okirat (Támogatói Okirat ikt. száma: TKP-17-1/PALY-2020) alapján zajló projektje részeként valósult meg.

A szerzők köszönetüket fejezik ki Kristály Ferencnek (Miskolci Egyetem) a röntgen-pordiffrakciós felvétel elkészítéséért, valamint Nagy Mónika és Mesics Gábor ásványgyűjtőknek (Sopron) a vizsgálati mintákért.

9. Irodalomjegyzék

[1] Pantó G. (1965): A Tokaji-hegység harmadkor előtti képződményei. Magyar Állami Földtani Intézet Évi Jelentése az 1963. évről, 227–241.

[2] Kisházi P. & Ivancsics J. (1988): Adatok a Zempléni-szerkezet kristályos paláinak kőzettanához. Földtani Közlöny, 118, 109–124.

[3] Gyalog L. (szerk.) (1996): A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása. A Magyar Állami Földtani Intézet Alkalmi Kiadványa 187. Magyar Állami Földtani Intézet, Budapest. 171 p.

[4] Kuti L. & Pentelényi L. (2005): Magyarország földtani térképe. M-34-128 Sátoraljaújhely. M = 1:100 000. Magyar Állami Földtani Intézet, Budapest.

[5] Pouchou, J.-L. & Pichoir, F. (1984): A new model for quantitative X-ray microanalysis. Part I: Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 13–38.

[6] Holland, T. J. B. & Redfern, S. A. T. (1997): Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineralogical Magazine, 61, 65–77.

[7] Livi, K. J. T., Christidis, G. E., Árkai, P. & Veblen, D. R. (2008): White mica domain formation: A model for para–gonite, margarite, and muscovite formation during prograde metamorphism. American Mineralogist, 93, 520–527.

[8] Fleet, M. E. (2003): Rock-forming minerals. Vol. 3A: Sheet silicates: Micas. 2nd Edition. The Geological Society, London. 758 p.

[9] Guidotti, C. V. (1984): Micas in metamorphic rocks. In: Bailey, S. W. (Ed.): Micas. Reviews in Mineralogy, 13, 357–468.

[10] Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B. L., Uher, P. & Pezzotta, F. (2011): Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895–913.

[11] Henry, D. J. & Dutrow, B. L. (1996): Metamorphic tourmaline and its petrologic applications. In: Grew, E. S. & Anovitz, L. M. (Eds.): Boron. Mineralogy, petrology and geochemistry. Reviews in Mineralogy, 33, 503–557.

[12] Bosi, F. (2010): Octahedrally coordinated vacancies in tourmaline: A theoretical approach. Mineralogical Magazine, 74, 1037–1044.

[13] Foit, F. F., Jr. & Rosenberg, P. E. (1977): Coupled substitutions in the tourmaline group. Contributions to Mineralogy and Petrology, 62, 109–127.

[14] Bosi, F. & Lucchesi, S. (2004): Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335–344.

[15] Ertl, A., Mali, H., Schuster, R., Körner, W., Hughes, J. M., Brandstätter, F. & Tillmanns, E. (2010): Libearing, disordered Mg-rich tourmaline from a pegmatite-marble contact in the Austroalpine basement units (Styria, Austria). Mineralogy and Petrology, 99, 89–104.

[16] Pantó, G., Kovách, A., Balogh, K. & Sámsoni, Z. (1967): Rb/Sr-check of Assyntian and Caledonian igneous activity and metamorphism in Northeastern Hungary. Acta Geologica Academiae Scientiarum Hungaricae, 11, 279–281.

[17] Finger, F. & Faryad, S. W. (1999): A Variscan monazite age from the Zemplin basement (eastern Western Carpathians). Acta Geologica Hungarica, 42, 301–307.

[18] Balogh K. (2006): A K/Ar és ⁴⁰Ar/³⁹Ar geokronológia fejlesztése és alkalmazása. Akadémiai doktori értekezés, MTA Atommagkutató Intézet, Debrecen.

[19] Leeman, W. P. & Sisson, V. B. (1996): Geochemistry of boron and its implications for crustal and mantle processes. In: Grew, E. S. & Anovitz, L. M. (Eds.): Boron. Mineralogy, petrology and geochemistry. Reviews in Mineralogy, 33, 645–708.

[20] Aggarwal, J. (1999): Boron. In: Marshall, C. P. & Fairbridge, R. H. (Eds.): Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 44–49.

[21] Henry, D. J. & Guidotti, C. V. (1985): Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 1–15.